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Abstract

This paper presents a subgradient-based algorithm for constrained nonsmooth
convex optimization that does not require projections onto the feasible set.
While the well-established Frank-Wolfe algorithm and its variants already avoid
projections, they are primarily designed for smooth objective functions. In con-
trast, our proposed algorithm can handle nonsmooth problems with general
convex functional inequality constraints. It achieves an ϵ-suboptimal solution
in O(ϵ−2) iterations, with each iteration requiring only a single (potentially
inexact) Linear Minimization Oracle (LMO) call and a (possibly inexact) subgra-
dient computation. This performance is consistent with existing lower bounds.
Similar performance is observed when deterministic subgradients are replaced
with stochastic subgradients. In the special case where there are no functional
inequality constraints, our algorithm competes favorably with a recent nonsmooth
projection-free method designed for constraint-free problems. Our approach uti-
lizes a simple separation scheme in conjunction with a new Lagrange multiplier
update rule.
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1 Introduction

Set V to be a finite-dimensional real inner product space, such as V = Rd, for instance.
Fix m as a nonnegative integer. This paper considers the problem

Minimize: f(x)

Subject to: hi(x) ≤ 0 ∀i ∈ {1, . . . ,m}
x ∈ X

where f : V → R and hi : V → R for i ∈ {1, . . . ,m} are convex functions; X ⊆ V
is a compact and convex set. Such convex optimization problems have applications in
fields such as machine learning, statistics, and signal processing [1–3]. While powerful
numerical methods like the interior-point method and Newton’s method are useful
[4, 5], they can be computationally intensive for large problems with many dimensions
(such as V = Rd where d is large). This has prompted interest in first-order methods
for large-scale problems [6, 7].

Many first-order methods solve subproblems that involve projections onto the fea-
sible set X . This projection step can be computationally expensive in high dimensions
[8, 9]. To avoid this, some first-order methods replace the projection with a linear
minimization over the set X [9–11]. For a given v ∈ V the Linear Minimization Oracle
(LMO) over the set X returns a point x ∈ X such that:

x ∈ argmin{⟨v , x⟩ : x ∈ X}.

The vast majority of such projection-free methods treat smooth objective functions
and/or do not have functional inequality constraints [12–16]. Our paper considers a
simple black-box method for general (possibly nonsmooth) objective and constraint
functions. For a given ϵ > 0, the method yields an approximate solution within O(ϵ) of
optimality with O(ϵ−2) iterations, with each iteration requiring one (possibly inexact)
subgradient calculation and one (possibly inexact) linear minimization over the set X .
This performance matches the existing lower bounds for the number of subgradient
calculations in first-order methods, which may involve projections, and the number
of linear minimizations for projection-free methods, as established in prior research
[5, 17–20].

1.1 Prior work

The Frank-Wolfe algorithm, introduced in [13], pioneered the replacement of the pro-
jection step with a linear minimization. Initially, this approach was developed for
problems with polytope domains. The Frank-Wolfe algorithm is also known as the
conditional gradient method [15]. Variants of Frank-Wolfe have found application in
diverse fields, including structured support vector machines [21], robust matrix recov-
ery [22, 23], approximate Carathéodory problems [24], and reinforcement learning
[25, 26]. Besides their notable computational efficiency achieved through avoiding
computationally expensive projection steps, Frank-Wolfe-style algorithms offer an
additional advantage in terms of sparsity. This means that the algorithm iterates
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can be succinctly represented as convex combinations of several points located on
the boundary of the relevant set. Such sparsity properties can be highly desirable in
various practical applications [12, 27].

Most Frank-Wolfe-style algorithms are only designed for smooth objective func-
tions. Some of these approaches handle functional inequality constraints by redefining
the feasible set as the intersection of set X and the functional constraints, potentially
eliminating the computational advantages of linear minimization over the feasible set
by changing it. Extending these methods to cope with nonsmooth objective and con-
straint functions is far from straightforward. A simple two-dimensional example in
[28] shows how convergence can fail when the basic Frank-Wolfe algorithm is used for
nonsmooth problems (replacing gradients with subgradients).

Initial efforts to extend Frank-Wolfe to nonsmooth problems can be found in [29–
31]. These methods require analytical preparations for the objective function and are
applicable to specific function classes. They are distinct from black-box algorithms
that work for general problems.

Another idea, initially introduced by [14] and later revisited by [16], involves
smoothing the nonsmooth objective function using a Moreau envelope [32]. This
approach demands access to a proximity operator associated with the objective func-
tion. While some nonsmooth functions have easily solvable proximity operators [33],
many do not. In general, the worst-case complexity of a single proximal iteration
can be the same as the complexity of solving the original optimization problem [34].
An alternative concept presented in [35] uses O(ϵ−2) queries to a Fenchel-type ora-
cle. However, the Fenchel-type oracle is only straightforward to implement for specific
classes of nonsmooth functions.

Another approach, proposed by [17], utilizes random smoothing (for a general
analysis of random smoothing, see [36]). This method demands O(ϵ−2) queries to a
LMO, which was proven to be optimal [17]. Unlike the previously mentioned methods,
this algorithm only relies on access to a first-order oracle. However, it falls short in
terms of the number of calls to the first-order oracle (O(ϵ−4) compared to the optimal
O(ϵ−2) achieved by projected subgradient descent [18, 19]).

In an effort to adapt the Frank-Wolfe algorithm to an online setting, [37] success-
fully achieved a convergence rate of O(ϵ−3) for both offline and stochastic optimization
problems with nonsmooth objective function. This was accomplished with just one
call to a LMO in each round.

In the context of projection-free methods for nonsmooth problems, the work [38]
was the first to achieve optimal O(ϵ−2) query complexity for both the LMO and the
first-order oracle that obtains subgradients. This was made possible through the idea
of approximating the Moreau envelope.

Our current paper introduces a different approach to achieve O(ϵ−2) query com-
plexity. In the special case of problems without functional inequality constraints, it
competes favorably with the work [38]. Moreover, our algorithm distinguishes itself by
its ability to handle functional inequality constraints, a feature not present in [38].

With respect to functional inequality constraints, prior work explores various tech-
niques, including cooperative subgradients [39], level-set [40, 41], exact penalty and
augmented Lagrangian methods [42–45], and Lyapunov drift-plus-penalty [46–49].
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The Frank-Wolfe algorithm has been generalized for stochastic affine constraints in
[50]. More recently, [51–53] have developed projection-free Frank-Wolfe approaches
for problems with functional constraints. However, they assume smooth or structured
nonsmooth objective functions.

1.1.1 Other projection-free

The predominant body of literature on projection-free methods, including the current
papers, typically assumes the existence of a Linear Minimization Oracle (LMO) for
the feasible set X . However, recent alternative approaches in [54–64] utilize various
techniques, such as separation Oracles, membership Oracles, Newton iterations, and
radial dual transformations. It’s worth noting that some of these oracles can be imple-
mented using others, as demonstrated, for instance, in [56]. Nevertheless, none of these
approaches can be considered universally superior to others in terms of implementation
efficiency.

1.2 Our contribution

This paper introduces a projection-free algorithm designed for general convex opti-
mization problems, with both feasible set and functional constraints. Our approach
has mathematical guarantees to work where both the objective and constraint func-
tions are nonsmooth, relying on access to only possibly inexact subgradient oracles
for these functions. While previous projection-free methods in the literature have
engaged with similar optimization challenges, they have primarily not included func-
tional constraints or have been limited to smoothable nonsmooth functions. To the
best of our knowledge, our algorithm is the first to address this category of problems
in a projection-free manner comprehensively.

Our algorithm achieves an optimal performance of O(ϵ−2), notably even in scenar-
ios where the LMO exhibits imprecision. This aspect is particularly crucial considering
that for certain sets, the inexact LMO offers the computational advantage over
projection onto those sets (for example, see [12]).

The derivation of our algorithm is notably distinct, as it more closely resembles
subgradient-descent-type algorithms rather than those of the Frank-Wolfe-type. We
start with a simple separation idea that enables each iteration to be separated into: (i)
A linear minimization over the feasible set X ; (ii) A projection onto a much simpler
set Y ⊆ V (this includes using Y = V, for which the projection step is trivial). This
separation sets the stage for a unique Lagrange multiplier update rule of the form

Wi,t+1 = max
{
Wi,t + hi(yt) + ⟨h′

i(yt) , yt+1 − yt⟩ , [−hi(yt+1)]+
}
.

Traditional Lagrange multiplier updates replace the right-hand-side with a maximum
with 0, rather than a maximum with [−hi(yt+1)]+ (see, for example, the classic update
rule for the dual subgradient algorithm in [1, 65, 66]). Our update is inspired by a
related update used in [67] for a different class of problems. However, the update
in [67] takes a max with −hi(yt+1) rather than its positive part. Our approach has
advantages in the projection-free scenario and may have applications in other settings.
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1.3 Applications

The proposed algorithm may be useful in problems where constraints are linear, and
the objective function is nonsmooth. For example, in network optimization, the con-
straints model channel capacity limits, which can be expressed as linear inequalities
and equalities [68, 69]. The objective function, describing utility and fairness [70, 71],
can be nonsmooth due to piecewise linearities and/or the usage of min{·}.

Our algorithm also has potential in Quantum State Tomography (QST), which is
a nonsmooth and stochastic problem. Earlier Frank-Wolfe-type work for this problem
has employed smoothing techniques [72], or has focused on solving the maximum
likelihood variant of QST [73].

Robust Structural Risk Minimization is another class of problems that can benefit
from our algorithm, mainly when sparsity is crucial. Our algorithm is well-equipped
to handle the inherent stochastic characteristics of the problem and the nonsmooth
nature of loss functions like the l1-norm or the Hinge function, which are commonly
utilized for robustness purposes [74–77]. Furthermore, the algorithm is adaptable to
complex scenarios such as Fused Lasso regression [78], enforcing additional desired
structures through functional constraints.

1.4 Notation

The set of positive real numbers are denoted as R+ ⊆ R. Our underlying space for
optimization is denoted as V and is assumed to be a finite-dimensional inner product
space with a general inner product ⟨v , u⟩ and a Euclidean norm determined by the
inner product, i.e., ∥ · ∥ =

√
⟨· , ·⟩. Our examples consider V = Rd with inner product

given by the dot product ⟨v , u⟩ := v⊤u, and V = Rq×p (for matrices) with inner
product ⟨v , u⟩ := Tr

(
v⊤u

)
. The positive part of a real number x is denoted [x]+ :=

max{0, x} and is also applied element-wise for elements of Rd. The subdifferential
of a function f at point x is denoted by ∂f(x), with f ′(x) representing a particular
(arbitrary) subgradient of f at x.

2 Formulation and problem separation

For a finite dimensional inner product space V and a compact set X ⊆ V, the problem
is

Minimize: f(x) (P1)

Subject to: hi(x) ≤ 0 ∀i ∈ {1, . . . ,m};x ∈ X

where f : V→ R and hi : V→ R for i ∈ {1, . . . ,m} are proper convex functions. Let
f∗ represent the optimal objective value. Let X ∗ ⊆ X be the set of optimal solutions.
It is assumed that X ∗ is nonempty. It follows by compactness of X that f∗ is finite.

The primary goal is to find an ϵ-suboptimal solution to Problem (P1). This can
involve numerical steps that make use of oracles that return random vectors. The
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output of the algorithm is the construction of a random vector x̄ ∈ X such that

E{f(x̄)} − f∗ ≤ O(ϵ),

and such that

E {∥ [h(x̄)]+ ∥2} ≡ E


√√√√ m∑

i=1

(max {0, hi(x̄)})2
 ≤ O(ϵ),

where h(x) = (h1(x), . . . , hm(x))⊤ and ∥ · ∥2 refers to the standard l2-norm defined on
vector space Rm. When the oracles are deterministic the expectations can be removed.
Assumption 1. The feasible set X is a compact convex subset of V, and there is a
known bound D on the diameter of the set X , such that

max
x,y
{∥x− y∥ : x, y ∈ X} ≤ D.

Assumption 2. There exists a vector (Lagrange multiplier) µ ∈ Rm
+ such that:

f∗ ≤ f(x) + µ⊤h(x) ∀x ∈ X . (1)

Assumption 3. The algorithm has access to the following computation oracles:
3.i Inexact Linear Minimization Oracle (In-LMO): For a given v ∈ V, this oracle

returns a random point x← In-LMOX {v} such that x ∈ X and

E {⟨x , v⟩} ≤ ⟨y , v⟩+ δ ∀y ∈ X

with a known error bound δ > 0.
3.ii Projection Oracle (PO): There is a closed convex set Y ⊆ V such that X ⊆ Y.

Given v ∈ V, this oracle returns a point POY{v} ∈ Y such that:

POY{v} := argmin
y∈Y
∥v − y∥. (2)

3.iii Stochastic Subgradient Oracle: Given y ∈ Y, this oracle independently returns
m+ 1 random vectors s, g1, . . . , gm such that

E{s | y} ∈ ∂f(y),

E{gi | y} ∈ ∂hi(y) ∀i ∈ {1, . . . ,m}.

Assume there are known real-valued constants L,G ≥ 0 and unknown real-valued
constants G1, . . . , Gm ≥ 0 such that:

∥gi∥ ≤ Gi ∀i ∈ {1, . . . ,m}
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m∑
i=1

G2
i ≤ G2

√
E
{
∥s∥2 | y

}
≤ L

so that the gi vectors are deterministically bounded while the s vector is required
only to have a finite second moment. It is worth noting that by the law of iterated

expectation, we obtain:

√
E
{
∥s∥2

}
≤ L.

3.iv Function Value Oracle: This oracle takes a point y ∈ Y and provides the values
hi(y) for i ∈ {1, . . . ,m} as its output.

Definition 1. Let V and V′ be two vector spaces endowed with their respective norms
∥·∥ and ∥·∥′. A function r : Y → V′ is termed Lipschitz continuous over the set Y ⊆ V
with a Lipschitz constant ζ > 0 if it satisfies the condition that for every pair of points
x and y in Y, the following inequality holds:

∥r(x)− r(y)∥′ ≤ ζ ∥x− y∥ .
Lemma 1. : If Assumption 3.iii is met, then the functions f : V→ R, h : V→ Rm,
and hi : V→ R (for all i ∈ {1, . . . ,m}) demonstrate Lipschitz continuity over the set
Y with Lipschitz constants not exceeding L, G, and Gi, respectively.

Proof. : See Appendix A.

2.1 Problem separation

Recall that X ⊆ Y. It is clear that Problem (P1) is equivalent to

Minimize: f(y) (P2)

Subject to: hi(y) ≤ 0 ∀i ∈ {1, . . . ,m}
y = x

x ∈ X ; y ∈ Y.

Problem (P2) is said to have a Lagrange multiplier vector (µ, λ), where µ ∈ Rm
+

and λ ∈ V, if

f∗ ≤ f(y) + µ⊤h(y) + ⟨λ , x− y⟩ ∀x ∈ X , y ∈ Y. (3)

Note that the right-hand-side of the above inequality uses the general inner product in
V for describing the contribution of the λ multiplier. The next lemma shows that the
new Problem (P2) has Lagrange multipliers whenever the original Problem (P1) does,
and the new multipliers can be described in terms of the original. The key connection
between the two problems arises by considering subgradients of the convex function
v : V→ R defined by

v(x) = f(x) + µ⊤h(x) ∀x ∈ V. (4)
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where µ is a Lagrange multiplier of Problem (P1). Note that the real-valued convex
functions f, hi, v have domains equal to the entire space V.
Lemma 2 (Lagrange Multipliers). Suppose the original Problem (P1) has a Lagrange
multiplier µ ∈ Rm

+ (so that Assumption 2 holds), and further assume Assumption 3.iii
is satisfied. Fix x∗ ∈ X ∗. Then there exists a λ ∈ V such that the pair (µ, λ) forms
a Lagrange multiplier for Problem (P2), meaning that (3) holds, and additionally
satisfies:

∥λ∥ ≤ L+ ∥µ∥2 G. (5)

Proof. : Since µ is a Lagrange multiplier of the original Problem (P1), we have, by (1)
and the definition of function v:

v(x) ≥ f∗ ∀x ∈ X . (6)

Applying (6) to the point x∗ ∈ X gives

f∗ ≤ v(x∗)

(a)
= f(x∗) + µ⊤h(x∗)

= f∗ + µ⊤h(x∗)

(b)

≤ f∗

where (a) holds by definition of v in (4); (b) holds because µ ≥ 0 and h(x∗) ≤ 0
(where these vector inequalities are taken entrywise). The above chain of inequalities
simultaneously proves:

v(x∗) = f∗ (7)

µ⊤h(x∗) = 0 (8)

The equality (7) together with (6) implies that x∗ minimizes the convex function
v : V → R over the restricted set of all x ∈ X . Thus, Prop B.24f from [42] ensures
there exists a subgradient λ ∈ ∂v(x∗) that satisfies:

⟨λ , x− x∗⟩ ≥ 0 ∀x ∈ X . (9)

(The property (9) is not necessarily satisfied by all subgradients in ∂v(x∗)). Fix y ∈ V
and x ∈ X . Since λ ∈ ∂v(x∗) we have, by the definition of a subgradient:

v(y) ≥ v(x∗) + ⟨λ , y − x∗⟩

Substituting the definition of v in (4) into the above inequality gives

f(y) + µ⊤h(y) ≥ f(x∗) + µ⊤h(x∗) + ⟨λ , y − x∗⟩
(a)
= f∗ + ⟨λ , y − x∗⟩
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= f∗ + ⟨λ , y − x⟩+ ⟨λ , x− x∗⟩
(b)

≥ f∗ + ⟨λ , y − x⟩

where (a) holds by (8); (b) holds by (9). This holds for all y ∈ V and x ∈ X . Since
Y ⊆ V, it certainly holds for all y ∈ Y and x ∈ X . This proves the desired Lagrange
multiplier inequality (3).

This particular λ ∈ ∂v(x∗) has the form

λ = f ′(x∗) +

m∑
i=1

µih
′
i(x

∗). (10)

for some particular subgradients in ∂f(x∗) and ∂hi(x
∗) for i ∈ {1, . . . ,m}. This follows

by the fact that v is a sum of convex functions and hence ∂v(x∗) is the Minkowski
sum of the subdifferentials of those component functions (see, for example, Prop B.24b
[42]).

Taking the Euclidean norm from both sides of (10) and using the triangle inequality
(note µi ≥ 0), we obtain:

∥λ∥ =

∥∥∥∥∥f ′(x∗) +

m∑
i=1

µih
′
i(x

∗)

∥∥∥∥∥ ≤ ∥f ′(x∗)∥+
m∑
i=1

µi ∥h′
i(x

∗)∥

Adding the Cauchy–Schwarz inequality, we get

∥λ∥ ≤ ∥f ′(x∗)∥+ ∥µi∥2

√√√√ m∑
i=1

∥h′
i(x

∗)∥2 (11)

Here we need to consider two cases:
i. If x∗ belongs to the interior of the set Y, then Lipschitz continuity of f and hi

proved in Lemma 1 implies that (see, for example, part (ii) of Theorem 3.61 [6]):

m∑
i=1

∥h′
i(x

∗)∥2 ≤ G2

∥f ′(x∗)∥ ≤ L

which concludes the proof.
ii. If x∗ does not belong to the interior of the set Y, then we cannot directly use

Lipschitz continuity to get a bound of the subgradients. The reason is that the
Lipschitz continuity of a function over Y does not guarantee the boundedness of
every subgradient by the Lipschitz constant. We employ the McShane-Whitney
extension theorem [79] to overcome this. Part of this theorem demonstrates that
if r : Y → R is a convex and ζ-Lipschitz continuous function on the convex set
Y, then there exists an extended function r̃ : V→ R that satisfies the following:
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(a) r(x) = r̃(x) for all x ∈ Y.
(b) For any x ∈ V, all subgradients s ∈ ∂r̃(x) have ∥s∥ ≤ ζ.
By part (a) of this theorem, our proof until (11) can be stated using the extended
functions f̃ and h̃. Thus, we can conclude that there exists a λ ∈ ∂(f̃ +µ⊤h̃)(x∗)
such that the pair (µ, λ) forms a Lagrange multiplier for Problem (P2), and this
particular λ has the form

λ = f̃ ′(x∗) +

m∑
i=1

µih̃
′
i(x

∗),

for some particular subgradients in ∂f̃(x∗) and ∂h̃i(x
∗) for i ∈ {1, . . . ,m}.

Part (b) of the theorem implies that the functions f̃ : V → R and h̃i : V → R
(for all i ∈ {1, . . . ,m}) demonstrate Lipschitz continuity over the set V, includ-
ing the boundary of the set X , with Lipschitz constants not exceeding L and Gi,
respectively. Thus,

m∑
i=1

∥∥∥h̃′
i(x

∗)
∥∥∥2 ≤ G2,∥∥∥f̃ ′(x∗)
∥∥∥ ≤ L,

which concludes the proof.

2.2 Algorithm intuition

The new Problem (P2) uses two decision variables x ∈ X and y ∈ Y. This is useful
precisely because of the Lagrange multiplier result (3). Our approach is as follows:
First imagine that we know the Lagrange multipliers µ and λ. Suppose we seek to
minimize the right-hand-side of (3) over all x ∈ X and y ∈ Y. This separates into two
subproblems:

• Chose x ∈ X to minimize the linear function ⟨λ , x⟩. This is done (in a possibly
noisy way) by the oracle In-LMOX .

• Choose y ∈ Y to minimize the possibly nonsmooth convex function f(y)+µ⊤h(y)−
⟨λ , y⟩. This is done by using subgradients and projecting onto the set Y via
the oracle POY . The set Y is chosen to be a set that contains X . Further, Y is
assumed to have a structure that is very simple so that projections onto Y are
easy. For example, if Y is a box, or a fixed radius ball centered at the origin, or
the entire space V itself, then projections are trivial. Since we avoid complicated
projections onto the feasible set X , our algorithm is “projection-free”.

Of course, the Lagrange multipliers µ and λ are unknown. Therefore, our algo-
rithm must use approximations of these multipliers that are updated as time goes on.
Further, even if µ and λ were known, minimizing the right-hand-side of (3) may not
have a desirable result. That is because the right-hand-side of (3) may have many
minimizers, not all of them satisfying the desired constraints. Therefore, our update
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rule is carefully designed to ensure convergence to a vector that satisfies the desired
constraints.

3 The new algorithm

We call our algorithm Nonsmooth Projection-Free Optimization with Functional Con-
straints. Our algorithm uses a parameter T ∈ {1, 2, 3, . . .} (which determines the

Algorithm 1 Nonsmooth Projection-Free Optimization with Functional Constraints
(Nonsmooth PF-FC)

Require: Parameters: T , η, α, β. Initial point: x1 ∈ X .
1: y1 ← x1

2: Q1 ← 0
3: Obtain stoch subgradients at y1: s1, g1,1, . . . , gm,1

4: W1 ← [−h(y1)]+
5: for 1 ≤ t ≤ T − 1 do
6: xt+1 ← In-LMOX {−Qt}
7: pt ← ηQt + st + β

∑m
i=1(Wi,t + hi(yt))gi,t

8: ỹt+1 ←
(
α+ 2G2β

)
yt + ηxt+1 − pt

α+ 2G2β + η
9: yt+1 ← POY{ỹt+1}

▷ Lines 7,8 and 9 are only separated for better readability.

10: Qt+1 ← Qt + yt+1 − xt+1

11: Obtain stoch subgradients at yt+1: st+1, g1,t+1, . . . , gm,t+1

12: for 1 ≤ i ≤ m do
13: Wi,t+1 ← max

{
Wi,t + hi(yt) +

〈
gi,t , yt+1 − yt

〉
, [−hi(yt+1)]+

}
14: end for
15: end for
16: return x̄ = 1

T

∑T
t=1 xt

number of iterations) and additional parameters η > 0, α > 0, β > 0. We focus on
two specific parameter choices:

• Parameter Selection 1: Fix ϵ > 0 and define

η = ϵ, α = β = 1/ϵ, T ≥ 1/ϵ2 (ParSel.1)

• Parameter Selection 2: Fix T ∈ {1, 2, 3, ...} and define

α =
L
√
T

D
, η =

L√
T (D2 + 2δ)

, β =

√
T

GD
(ParSel.2)

The first parameter selection is useful when the values D,L, δ associated with the
problem structure are unknown. The second is fine tuned with knowledge of these
values.
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Theorem 1 (Objective gap). Given Assumption 1-3, for Algorithm 1 with any T ∈
{1, 2, 3, ...}, η > 0, α > 0, β > 0, the expected gap in the objective function is bounded
as follows:

E {f(x̄)} − f(x∗) ≤ L2

2Tη
+ η

D2 + 2δ

2
+

L2

2α
+

αD2

2T
+

G2D2β

T

In particular, under Parameter Selection (ParSel.1) we have

E {f(x̄)} − f∗ ≤ O(ϵ) ∀T ≥ 1/ϵ2,

while under Parameter Selection (ParSel.2) we have

E {f(x̄)} − f∗ ≤
(
L
√

D2 + 2δ + LD +GD
) 1√

T
.

Theorem 2 (Constraint violation). Given Assumption 1-3, Algorithm 1 under
Parameter Selection (ParSel.1) yields

E
{
∥ [h(x̄)]+ ∥2

}
≤ O(ϵ) ∀T ≥ 1/ϵ2,

while under Parameter Selection (ParSel.2) we have

E
{
∥ [h(x̄)]+ ∥2

}
≤ 1√

T

√
A0 +A1∥µ∥2 +A2∥µ∥22.

Here, A1, A2, and A3 are constants depending on the problem’s constants (they are
defined in the last part of the theorem’s proof). The variable µ represents the Lagrange
multiplier from (1).

The proof of the first theorem is provided in this section. The proof of the second
theorem is in Appendix A.1.
Remark 1. When the number of iterations T is on the order of O(ϵ−2), the expected
suboptimality E {f(x̄)} − f∗ is bounded by O(ϵ). This approach achieves an optimal
solution in terms of the computational cost, measured by the number of calls to both
the In-LMO and the (possibly stochastic) first-order oracle [5, 17, 19].

3.1 Lagrange multiplier update analysis

Line 10 of Algorithm 1 specifies that Qt+1 = Qt + yt+1 − xt+1. If we apply the ∥ · ∥2
norm to both sides of this equation for all t ∈ {1, . . . , T − 1}, we obtain:

⟨Qt , yt+1 − xt+1⟩+
1

2
∥yt+1 − xt+1∥2 =

1

2
∥Qt+1∥2 −

1

2
∥Qt∥2. (12)
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Furthermore, summing Qt+1 = Qt + yt+1 − xt+1 over all t and using Line 2 which
states Q1 = 0, gives:

QT =

T∑
t=1

(yt − xt) = T (ȳ − x̄). (13)

Here, similar to x̄, we define ȳ := 1
T

∑T
t=1 yt.

For simplicity, define li,t(x) as the linearization of hi at the point yt obtained from
the algorithm. This linearization uses the stochastic subgradient gi,t:

li,t(x) := hi(yt) + ⟨gi,t , x− yt⟩ . (14)

Define lt(x) as a vector, where each element at index i corresponds to li,t(x).
Lemma 3. : Under Algorithm 1 with any T ∈ {1, 2, 3, . . .}, η > 0, α > 0, β > 0, we
have for any x∗ ∈ X ∗, i ∈ {1, . . . ,m}, and t ∈ {1, . . . , T}

Wi,t ≥ 0 (15)

Wi,t + hi(yt) ≥ 0 (16)

E
{
(Wt + h(yt))

⊤
lt(x

∗)
}
≤ 0 (17)

Further, for all t ∈ {1, . . . , T − 1} we have

(Wt + h(yt))
⊤
lt(yt+1) +

G2

2
∥yt+1 − yt∥2

≥ ∥Wt+1∥22
2

− ∥WT ∥22
2

−
∥ [−h(yt+1)]+ ∥22

2
+
∥h(yt)∥22

2
. (18)

Proof. : Lines 4 at t = 1 and 13 at t ≥ 2 establish that Wi,t ≥ max {0,−hi(yt)},
thereby confirming the validity of equations (15) and (16).

Using the definition of the function lt in equation (14) we have:

(Wt + h(yt))
⊤
lt(x

∗) =

m∑
i=1

(Wi,t + hi(yt)) (hi(yt) + ⟨gi,t , x∗ − yt⟩) .

Using the iterated expectation gives:

E

{
m∑
i=1

(Wi,t + hi(yt)) (hi(yt) + ⟨gi,t , x∗ − yt⟩)

}

=E

{
m∑
i=1

E {Wi,t + hi(yt) | yt} (hi(yt) + ⟨E {gi,t | yt} , x∗ − yt⟩)

}
.

Assumption 3.iii implies E {gi,t | yt} ∈ ∂hi(yt). Using equation (16) and convexity of
the function hi we get:

13



E {Wi,t + hi(yt) | yt} (hi(yt) + ⟨E {gi,t | yt} , x∗ − yt⟩)
≤ E {Wi,t + hi(yt) | yt}hi(x

∗) ≤ 0.

The last part is by the inequality hi(x
∗) ≤ 0. This proves equation (17).

Applying the inequality (max{a, b})2 ≤ a2 + b2 to Line 13 gives

W 2
i,t+1

2
≤
W 2

i,t

2
+Wi,t (hi(yt) + ⟨gi,t , yt+1 − yt⟩)

+
1

2
(hi(yt) + ⟨gi,t , yt+1 − yt⟩)2 +

[−hi(yt+1)]
2
+

2

=
W 2

i,t

2
+Wi,t (hi(yt) + ⟨gi,t , yt+1 − yt⟩)

+ hi(yt) (hi(yt) + ⟨gi,t , yt+1 − yt⟩)

− (hi(yt))
2

2
+

1

2
(⟨gi,t , yt+1 − yt⟩)2 +

[−hi(yt+1)]
2
+

2

≤
W 2

i,t

2
+ (Wi,t + hi(yt)) (hi(yt) + ⟨gi,t , yt+1 − yt⟩)

+
∥gi,t∥2

2
∥yt+1 − yt∥2 +

[−hi(yt+1)]
2
+

2
− (hi(yt))

2

2
.

By summing over the range 1 ≤ i ≤ m and leveraging Assumption 3.iii, which
implies

∑m
i=1 ∥gi,t∥2 ≤ G2, and using the vectorized notation (14), we get the proof of

equation (18).

3.2 Algorithm analysis

By definition of st as a stochastic subgradient of f at yt we have

E {⟨st , x∗ − yt⟩ | yt} ≤ f(x∗)− f(yt)

By iterated expectations we have

E {⟨st , x∗ − yt⟩} ≤ f(x∗)− E {f(yt)} (19)

Line 6 of Algorithm 1 gives xt+1 ← In-LMOX {−Qt}. Since x∗ ∈ X , Assumption 3.i
ensures that xt+1 satisfies

E{⟨xt+1 , −Qt⟩ | Qt} ≤ ⟨x∗ , −Qt⟩+ δ.

Taking expectations of both sides and rearranging gives

E {⟨Qt , x
∗ − xt+1⟩} ≤ δ. (20)
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Lemma 4. : Lines 7, 8, and 9 of Algorithm 1 are equivalent to:

yt+1 = argmin
y∈Y

{
η ⟨Qt , y − xt+1⟩+ ⟨st , y − yt⟩+ β (Wt + h(yt))

⊤
lt(y)

+
η

2
∥y − xt+1∥2 +

α+ 2G2β

2
∥y − yt∥2

}
. (21)

Proof. See Appendix A.

Lemma 5. [Pushback lemma] Let function r : V → R be convex function and let
Y ⊆ V be a convex set. Fix ζ > 0, x̃ ∈ V. Suppose there exists a point y such that:

y = argmin
x∈Y

{
r(x) + ζ∥x− x̃∥2

}
.

Then
r(y) + ζ∥y − x̃∥2 ≤ r(z) + ζ∥z − x̃∥2 − ζ∥z − y∥2 ∀z ∈ Y.

Proof. : This lemma and its proof can be found in various forms in [80–82].

Proof of Theorem 1:. Fix t ∈ {1, 2, . . . , T − 1}. By definition of yt+1 as the minimizer
in (21) we have by the pushback lemma (and the fact x∗ ∈ Y):

η ⟨Qt , yt+1 − xt+1⟩+ ⟨st , yt+1 − yt⟩+ β (Wt + h(yt))
⊤
lt(yt+1)

+
η

2
∥yt+1 − xt+1∥2 +

α+ 2G2β

2
∥yt+1 − yt∥2

≤η ⟨Qt , x
∗ − xt+1⟩+ ⟨st , x∗ − yt⟩+ β (Wt + h(yt))

⊤
lt(x

∗)

+
η

2
∥x∗ − xt+1∥2 +

α+ 2G2β

2

(
∥x∗ − yt∥2 − ∥x∗ − yt+1∥2

)
.

(22)

Denote the right-hand-side and left-hand-side of the inequality above as RHSt and
LHSt, respectively.

By completing the square, we obtain:

⟨st , yt+1 − yt⟩+
α

2
∥yt+1 − yt∥2 ≥ −

∥st∥2

2α
.

Substituting this inequality into the LHSt gives

LHSt ≥η ⟨Qt , yt+1 − xt+1⟩+ β (Wt + h(yt))
⊤
lt(yt+1)−

∥st∥2

2α

+
η

2
∥yt+1 − xt+1∥2 +

2G2β

2
∥yt+1 − yt∥2

≥η

2
∥Qt+1∥2 −

η

2
∥Qt∥2 +

G2β

2
∥yt+1 − yt∥2 −

∥st∥2

2α
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+
β

2
∥Wt+1∥22 −

β

2
∥WT ∥22 −

β

2
∥ [−h(yt+1)]+ ∥

2
2 +

β

2
∥h(yt)∥22

where the last inequality uses equations (12), and (18). By taking expectations and
summing over t ∈ {1, 2, . . . , T − 1}, and using the inequality ∥ [−x]+ ∥2 ≤ ∥x∥2, we
obtain:

T−1∑
t=1

E {LHSt} ≥
η

2
E
{
∥QT ∥2 − ∥Q1∥2

}
+

G2β

2

T−1∑
t=1

E
{
∥yt+1 − yt∥2

}
−

T−1∑
t=1

E
{
∥st∥2

}
2α

+
β

2
E
{
∥WT ∥22 − ∥W1∥22 − ∥ [−h(yT )]+ ∥

2
2 + ∥h(y1)∥

2
2

}
(23)

Lines 2, 4, and 13 of Algorithm 1 lead to the following implications, respectively:

Q1 = 0

∥W1∥2 = ∥ [−h(y1)]+ ∥2 ≤ ∥h(y1)∥2
∥WT ∥2 ≥ ∥ [−h(yT )]+ ∥2

Utilizing the inequalities mentioned above and dropping the positive term ∥yt+1−yt∥2
(we will use ∥yt+1 − yt∥2 when proving Theorem 2), (23) becomes:

T−1∑
t=1

E {LHSt} ≥
η

2
E
{
∥QT ∥2

}
−

T−1∑
t=1

E
{
∥st∥2

}
2α

. (24)

Now consider the RHSt term defined in (22). Given Assumption 1, we have ∥x∗−
xt+1∥ ≤ D. Using this and taking the expectation yields:

E {RHSt} ≤ ηE {⟨Qt , x
∗ − xt+1⟩}+ E {⟨st , x∗ − yt⟩}

+ βE
{
(Wt + h(yt))

⊤
lt(x

∗)
}
+

ηD2

2
+

α+ 2G2β

2
E
{
∥x∗ − yt∥2 − ∥x∗ − yt+1∥2

}
Using equation (17), which states that E

{
(Wt + h(yt))

⊤
lt(x

∗)
}
≤ 0, and

equation (20), which states that E {⟨Qt , x
∗ − xt+1⟩} ≤ δ, we can further simplify the

expression as follows:

E {RHSt} ≤ ηδ + E {⟨st , x∗ − yt⟩}

+
α+ 2G2β

2
E
{
∥x∗ − yt∥2 − ∥x∗ − yt+1∥2

}
+

ηD2

2
.
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Line 1 of the algorithm states y1 = x1 ∈ X thus Assumption 1 implies ∥x∗− y1∥ ≤ D.
Using this and summing over t ∈ {1, 2, . . . , T − 1}, we obtain:

T−1∑
t=1

E {RHSt} ≤
T−1∑
t=1

E {⟨st , x∗ − yt⟩} −
α+ 2G2β

2
E
{
∥x∗ − yT ∥2

}
+

α+ 2G2β

2
D2 + Tη

D2 + 2δ

2
, (25)

where in the last term we used T − 1 ≤ T to simplify it.
Substituting equations (24) and (25) into (22) and rearranging the terms, we

obtain:

T−1∑
t=1

E {⟨st , yt − x∗⟩} ≤ − η

2
E
{
∥QT ∥2

}
− α+ 2G2β

2
E
{
∥x∗ − yT ∥2

}
+

α+ 2G2β

2
D2 + Tη

D2 + 2δ

2
−

T−1∑
t=1

E
{
∥st∥2

}
2α

(26)

Consider the following:

0 ≤ 1

2

∥∥∥∥ sT√
α
+
√
α(x∗ − yT )

∥∥∥∥2 =
∥sT ∥2

2α
+

α

2
∥x∗ − yT ∥2 + ⟨sT , x∗ − yT ⟩

Taking expectation we can simply write

E {⟨sT , yT − x∗⟩} ≤
E
{
∥sT ∥2

}
2α

+
α

2
E
{
∥x∗ − yT ∥2

}
(27)

Replacing (27) in (26) and dropping the negative term − 2G2β
2 E

{
∥x∗ − yT ∥2

}
, we get:

T∑
t=1

E {⟨st , yt − x∗⟩} ≤ − η

2
E
{
∥QT ∥2

}
+

T∑
t=1

E
{
∥st∥2

}
2α

+
α+ 2G2β

2
D2 + Tη

D2 + 2δ

2

(28)

Remember we defined ȳ = 1
T

∑T
t=1 yt. For the left-hand-side of the (28) we can write:

T∑
t=1

E {⟨st , yt − x∗⟩}
(a)

≥
T∑

t=1

(E {f(yt)} − f(x∗))

(b)

≥TE

{
f

(
1

T

T∑
t=1

yt

)}
− Tf(x∗)

=TE {f(ȳ)} − Tf(x∗)
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(c)

≥TE {f(x̄)− L∥ȳ − x̄∥} − Tf(x∗)

where (a) holds by equation (19); (b) holds by Jensen’s inequality; and (c) relies on the
Lipschitz continuity of f as established in Lemma 1. Substituting this in equation (28)
we get:

TE {f(x̄)} − Tf(x∗) ≤TLE {∥ȳ − x̄∥} − η

2
E
{
∥QT ∥2

}
+

T∑
t=1

E
{
∥st∥2

}
2α

+
α+ 2G2β

2
D2 + Tη

D2 + 2δ

2

(29)

The equation (13) states QT = T (ȳ − x̄). Thus by completing the square we can write:

TLE {∥ȳ − x̄∥} − η

2
E
{
∥QT ∥2

}
= TLE {∥ȳ − x̄∥} − η

2
E
{
T 2∥ȳ − x̄∥2

}
≤ L2

2η
.

Finally, by employing the above inequality in (29) and dividing both sides by T , we
obtain:

E {f(x̄)} − f(x∗) ≤ L2

2Tη
+ η

D2 + 2δ

2
+

T∑
t=1

E
{
∥st∥2

}
2Tα

+
αD2

2T
+

G2D2β

T

Using Assumption 3.iii to bound E
{
∥st∥2

}
≤ L2 completes the proof.

4 A Numerical Experiment: Robust Reduced Rank
Regression with Nuclear Norm Relaxation

The problem of multi-output regression [83], which is a special case of multi-task
learning [84], can be defined as follows. Given a dataset consisting of n samples, where
each sample includes a response vector yi ∈ Rq and a predictor vector xi ∈ Rp, we
consider a multivariate linear regression model:

y = cx+ e.

Here, we defined matrices y = (y1, . . . , yn) and x = (x1, . . . , xn). The c is a q ×
p coefficient matrix, and e = (e1, . . . , en) is a q × n matrix of independently and
identically distributed random errors.

In traditional linear regression, it’s often assumed that the errors follow a Gaussian
distribution, which works well when the data conforms to this assumption. However,
in cases where the data contains outliers or exhibits heavy tails that deviate from the
Gaussian distribution, this assumption does not hold.
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To address this, we assume that the error matrix e in our model follows a Laplace
distribution, also known as the double-exponential distribution. The Laplace distri-
bution assigns more weight to the tails of the distribution compared to the Gaussian
distribution, making it better suited for modeling data with outliers and heavy tails
[74–76].

Reduced Rank Regression, introduced by Anderson in 1951 [85], is a specific form
of multi-output regression. It operates under the assumption that the rank of the
coefficient matrix c is small. In this approach, the relationship between multiple output
variables and a set of input features is modeled using a lower-rank approximation.
This allows us to capture underlying patterns in the data efficiently. However, the low-
rank constraint doesn’t define a convex set. To make this constraint convex, we can
employ nuclear norm regularization. The nuclear norm encourages low-rank solutions
by penalizing the sum of the singular values of c [86].

Thus, our optimization problem can be formulated as follows:

minimize
1

n

n∑
k=1

∥yi − cxi∥2 subject to c ∈ Rq×p, ∥c∥∗ ≤ γ. (30)

Here, ∥ · ∥2 denotes the Euclidean norm of a column vector. The choice of the ∥ · ∥2
loss function, as opposed to ∥ · ∥22 which is common in regression, increases robustness
against outliers. Intuitively, this is more robust as the loss grows linearly instead of
quadratically when distancing from the true value [87, 88].

Numerical results: We generated synthetic data using the following configura-
tion: n = 200, q = 300, p = 500, and rank(c) = 40. Each element of the noise matrix,
{ei,j}, are i.i.d. samples of a Laplace distribution with parameters µ = 0 and b = 2,
and {xi,j} are i.i.d. samples of a standard normal distribution. We simulated four
algorithms, with three of them utilizing full SVD computation:

• Our new Algorithm with exact LMO.
• P-MOLES from [89].
• Projected subgradient descent (PGD).

Additionally, we executed our algorithm with inexact LMO, which involves a stochastic
calculation of the largest eigenvalue using the Lanczos algorithm [12, 90, 91], to assess
the computational advantages and trade-offs.

Figures 1 and 2 illustrate the expected loss relative to noiseless data for a fixed
γ value of 350. Specifically, the x-axes of the respective figures represent the number
of iterations and the computational time. The computational gain obtained by using
inexact LMO is quite visible in Figure 2.

In Figure 3, we keep the number of iterations fixed at T = 300. When γ is very
small, all four algorithms perform poorly. This is because the function class is too
limited, and the models are overly simplified. As γ becomes very large, the performance
of all models starts to deteriorate, which can be attributed to the broad scope of
the model class. However, the PGD algorithm underperforms in comparison to our
projection-free algorithm and the P-MOLES algorithm. This can be explained by the
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fact that, as mentioned before, methods like Frank-Wolfe implicitly encourage sparsity
in the results.1
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Fig. 1 Expected loss as a function of the number of iterations for γ = 350, compared to noiseless
data.

5 Conclusions and Open Problems

This paper tackles the problem of solving general convex optimization with functional
constraints without projecting onto the feasible set. Previous studies on projection-free
algorithms mainly focused on smooth problems and/or did not consider functional con-
straints. Our experiments and convergence theorems demonstrate that our algorithm
performs comparably to projected stochastic subgradient descent methods, making it
a viable alternative in scenarios where projection-free approaches are preferred.

An open problem is whether our algorithm can incorporate benefits from mir-
ror descent [92, 93], an established method that substitutes the Euclidean norm in
projected subgradient descent with Bregman divergence, leading to enhanced perfor-
mance in specific contexts, such as when dealing with a probability simplex. Another
question is whether, similar to projected subgradient descent, we can achieve an
improved rate for nonsmooth, strongly convex optimization [94]. Another important
area to explore is how our method works in online settings. This is especially rele-
vant since projection-free online convex optimization is a highly discussed topic today
[37, 57, 58, 61, 62, 95].

1It is worth mentioning that this implicit regularization effect diminishes as the number of iterations
increases. It remains an open question how to disentangle the number of iterations and the degree of sparsity
enforced by the Frank-Wolfe-type algorithms. One possible idea to tackle this challenge is to restart the
algorithm. This means that after achieving a low-error point, the algorithm is rerun, starting from that
point.
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Fig. 2 Computational time versus error for inexact LMO with γ = 350, demonstrating the compu-
tational efficiency.
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Fig. 3 Performance of four algorithms at T = 300 iterations. Performance dips for very small or
large γ.

Additionally, it is worth investigating whether the subgradient can be computed
on points within the feasible set X , rather than using yt ∈ Y that may lie outside of
the set X . Notably, our algorithm is not unique in utilizing subgradients outside the
feasible set [36, 38, 59, 63, 64, 89, 96].
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Appendix A Remaining proofs

Proof of Lemma 1. Lipschitz continuity of f : Let x, y ∈ Y. Consider stochastic
subgradients sx of f at x. This vector, as per Assumption 3.iii, satisfy the following
conditions:

E{sx | x} ∈ ∂f(x),

√
E
{
∥sx∥2 | x

}
≤ L,

Exploiting the convexity of f and applying the Cauchy–Schwarz inequality, we arrive
at:

f(x)− f(y) ≤ ⟨E{sx | x} , x− y⟩ ≤ ∥E{sx | x}∥ ∥x− y∥.
Using Jensen’s inequality for the norm function (which is convex) and the nonnega-
tivity of the variance, we can further deduce:

∥E{sx | x}∥ ≤ E{∥sx∥ | x} ≤
√

E
{
∥sx∥2 | x

}
≤ L

These implications lead to:

f(x)− f(y) ≤ L∥x− y∥.

Similarly, considering a stochastic subgradient sy of f at point y, we can deduce:

f(y)− f(x) ≤ L∥x− y∥.

This concludes the proof of Lipschitz continuity for f .
Lipschitz continuity of hi: Let x, y ∈ Y. Consider stochastic subgradients gx of

hi at x. This vector, as per Assumption 3.iii, satisfy the following conditions:

E{gx | x} ∈ ∂hi(x), ∥gx∥ ≤ Gi,

Similar to the analysis of function f , by exploiting the convexity of hi, applying the
Cauchy–Schwarz inequality, and using Jensen’s inequality we arrive at:

hi(x)− hi(y) ≤ E{∥gx∥ | x}∥x− y∥ ≤ Gi∥x− y∥.
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Similarly, considering a stochastic subgradient gy of hi at point y, we can deduce:

hi(y)− hi(x) ≤ Gi∥x− y∥.

This concludes the proof of Lipschitz continuity for hi.
Lipschitz continuity of h: Lipschitz continuity of hi implies:

(hi(y)− hi(x))
2 ≤ G2

i ∥x− y∥2.

By summing over i ∈ {1, . . . ,m} we get:

∥h(y)− h(x)∥22 ≤
m∑
i=1

G2
i ∥x− y∥2 ≤ G2∥x− y∥2.

This concludes the proof of Lipschitz continuity for h.

Proof of Lemma 4:. We initiate our proof with Line 9, which states that yt+1 =
POY{ỹt+1}. By applying the definition of projection from equation (2), we can express
it as:

yt+1 = argmin
y∈Y
{∥y − ỹt+1∥} = argmin

y∈Y
{∥y − ỹt+1∥2}.

Now, utilizing Line 8, we obtain:

∥y − ỹt+1∥2 =

∥∥∥∥∥y −
(
α+ 2G2β

)
yt + ηxt+1 − pt

α+ 2G2β + η

∥∥∥∥∥
2

Define Ω := α+ 2G2β + η. This allows us to further simplify it as:

yt+1 = argmin
y∈Y

{
Ω∥y∥2 − 2

〈(
α+ 2G2β

)
yt + ηxt+1 , y

〉
+ 2 ⟨pt , y⟩

}
Continuing with the simplification and invoking Line 7, which defines the temporary
variable pt, we arrive at:

yt+1 =argmin
y∈Y

{
η

2
∥y − xt+1∥2 +

α+ 2G2β

2
∥y − yt∥2

+ ⟨ηQt , y⟩+ ⟨st , y⟩+

〈
β

m∑
i=1

(Wi,t + hi(yt))gi,t , y

〉}

=argmin
y∈Y

{
η

2
∥y − xt+1∥2 +

α+ 2G2β

2
∥y − yt∥2 + η ⟨Qt , y − xt+1⟩

+ ⟨st , y − yt⟩+ β

m∑
i=1

(Wi,t + hi(yt)) (hi(yt) + ⟨gi,t , y⟩)

}
.
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Finally, by utilizing the linearized function lt defined in equation (14), we conclude
the proof.

A.1 Proof of Theorem 2

Lemma 6. : Line 13 implies the following inequality:

∥ [h(x̄)]+ ∥2 ≤
∥WT ∥2 + ∥ [h(yT )]+ ∥2

T
+

G

T

T−1∑
t=1

∥yt+1 − yt∥+G∥ȳ − x̄∥.

Proof. : Fix i ∈ {1, . . . ,m}. Line 13 of the algorithm implies:

Wi,t+1 ≥Wi,t + hi(yt) + ⟨gi,t , yt+1 − yt⟩

Using the Cauchy–Schwarz inequality we get:

Wi,t+1 ≥Wi,t + hi(yt) + ∥gi,t∥ ∥yt+1 − yt∥

Summing over t ∈ {1, . . . , T − 1} gives:

Wi,T ≥Wi,1 +

T−1∑
t=1

hi(yt) +

T−1∑
t=1

∥gi,t∥ ∥yt+1 − yt∥

Using the fact that Wi,1 ≥ 0 from Lemma 3, and adding hi(yT ) to both sides, we get:

T∑
t=1

hi(yt) ≤Wi,T + hi(yT )−
T−1∑
t=1

∥gi,t∥ ∥yt+1 − yt∥

Furthermore, by applying Jensen’s inequality we get:

hi(ȳ) ≤
1

T

(
Wi,T + hi(yT ) +

T−1∑
t=1

∥gi,t∥ ∥yt+1 − yt∥

)

Adding hi(x̄)− hi(ȳ) to both sides of the inequality we get

hi(x̄) ≤
1

T

(
Wi,T + hi(yT ) +

T−1∑
t=1

∥gi,t∥ ∥yt+1 − yt∥

)
+ hi(x̄)− hi(ȳ)

The positive part function [·]+ is nondecreasing. Therefore:

[hi(x̄)]+ ≤

[
1

T

(
Wi,T + hi(yT ) +

T−1∑
t=1

∥gi,t∥ ∥yt+1 − yt∥

)
+ hi(x̄)− hi(ȳ)

]
+
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Lemma 3, states Wi,T ≥ 0. Using the general property that for any two nonnegative
real numbers a and b, [a+ b]+ ≤ [a]+ + [b]+, we obtain:

[hi(x̄)]+ ≤
Wi,T + [hi(yT )]+

T
+

1

T

T−1∑
t=1

∥gi,t∥ ∥yt+1 − yt∥+ [hi(x̄)− hi(ȳ)]+ (A1)

To continue the proof, consider the following inequality. Fix arbitrary vectors
a, b1, . . . , bK ∈ Rm

+ . If vector a is component-wise smaller than or equal to the vector∑K
k=1 bk, then we have ∥a∥2 ≤

∥∥∥∑K
k=1 bk

∥∥∥
2
. Utilizing the triangle inequality this gives:

∥a∥2 ≤
∑K

k=1 ∥bk∥2. Thus, considering the (A1) as an inequality for i-th element of
vectors belonging to Rm

+ , we can write: 2

∥[h(x̄)]+∥2 ≤
∥WT ∥2 +

∥∥[hi(yT )]+
∥∥
2

T
+

1

T

T−1∑
t=1

√√√√ m∑
i=1

∥gi,t∥2∥yt+1 − yt∥

+
∥∥[h(x̄)− h(ȳ)]+

∥∥
2

(a)

≤
∥WT ∥2 +

∥∥[hi(yT )]+
∥∥
2

T
+

G

T

T−1∑
t=1

∥yt+1 − yt∥+
∥∥[h(x̄)− h(ȳ)]+

∥∥
2

(b)

≤
∥WT ∥2 +

∥∥[hi(yT )]+
∥∥
2

T
+

G

T

T−1∑
t=1

∥yt+1 − yt∥+ ∥h(x̄)− h(ȳ)∥2

(c)

≤
∥WT ∥2 +

∥∥[hi(yT )]+
∥∥
2

T
+

G

T

T−1∑
t=1

∥yt+1 − yt∥+G∥ȳ − x̄∥

Here, (a) is by Assumption 3.iii; the simple fact that for any a ∈ Rm, we have ∥[x]+∥2 ≤
∥x∥2 implies (b); and (c) in by Lemma 1.

Proof of Theorem 2:. The initial steps of this proof closely resemble those in the
proof of Theorem 1. Just as we did in that proof, we will denote the right-hand-side
and left-hand-side of (22) as RHSt and LHSt, respectively. The previously derived
equation (23) is demonstrated here:

2The vectors are as follows:

• ([h1(x̄)]+, . . . , [hm(x̄)]+)⊤,

• 1
T (W1,T , . . . ,Wm,T )⊤,

• 1
T

(
[h1(yT )]+, . . . , [hm(yT )]+

)⊤
,

• 1
T (∥g1,t∥ ∥yt+1 − yt∥, . . . , ∥gm,t∥ ∥yt+1 − yt∥)⊤, for all t ∈ {1, . . . , T − 1},

•
(
[h1(x̄) − h1(ȳ)]+ , . . . , [hm(x̄) − hm(ȳ)]+

)⊤
.

25



T−1∑
t=1

E {LHSt} ≥
η

2
E
{
∥QT ∥2 − ∥Q1∥2

}
+

G2β

2

T−1∑
t=1

E
{
∥yt+1 − yt∥2

}
−

T−1∑
t=1

E
{
∥st∥2

}
2α

+
β

2
E
{
∥WT ∥22 − ∥W1∥22 − ∥ [−h(yT )]+ ∥

2
2 + ∥h(y1)∥

2
2

}
(Eq.(23) copied)

Lines 2 and 4 of the algorithm lead to the following implications, respectively:

Q1 = 0,

∥W1∥2 = ∥ [−h(y1)]+ ∥2 ≤ ∥h(y1)∥2.

Utilizing the inequalities mentioned above, we obtain:

T−1∑
t=1

E {LHSt} ≥
η

2
E
{
∥QT ∥2

}
+

G2β

2

T−1∑
t=1

E
{
∥yt+1 − yt∥2

}
−

T−1∑
t=1

E
{
∥st∥2

}
2α

+
β

2
E
{
∥WT ∥22 − ∥ [−h(yT )]+ ∥

2
2

} (A2)

Note that, unlike what we did in (24), we did not utilize the inequality ∥WT ∥2 ≥
∥ [−h(yT )]+ ∥2 in (A2).

For the RHSt, we use the previously derived (25), which is demonstrated below:

T−1∑
t=1

E {RHSt} ≤
T−1∑
t=1

E {⟨st , x∗ − yt⟩} −
α+ 2G2β

2
E
{
∥x∗ − yT ∥2

}
+

α+ 2G2β

2
D2 + Tη

D2 + 2δ

2
. (Eq.(25) copied)

Using (27) in the above equation we get:

T−1∑
t=1

E {RHSt} ≤
T∑

t=1

E {⟨st , x∗ − yt⟩} −G2βE
{
∥x∗ − yT ∥2

}
+

α+ 2G2β

2
D2 + Tη

D2 + 2δ

2
+

E
{
∥sT ∥2

}
2α

.

(A3)
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Consider the following derivation. Starting from equation (19), we obtain the
following expression:

T∑
t=1

E {⟨st , x∗ − yt⟩} ≤
T∑

t=1

E {f(x∗)− f(yt)}

(by Lemma 2) ≤
T∑

t=1

E
{
µ⊤h(yt) + ⟨λ , xt − yt⟩

}
(by the definition of x̄, ȳ) =

T∑
t=1

E
{
µ⊤h(yt)

}
+ T ⟨λ , E {x̄− ȳ}⟩

(A4)

For any i ∈ {1, . . . ,m}, Line 13 of the algorithm implies:

hi(yt) ≤Wi,t+1 −Wi,t − ⟨gi,t , yt+1 − yt⟩
(by Cauchy-Schwarz) ≤Wi,t+1 −Wi,t + ∥gi,t∥ ∥yt+1 − yt∥

(A5)

Summing (A5) over t in the range t ∈ {1, . . . , T − 1} yields:

T−1∑
t=1

hi(yt) ≤
T−1∑
t=1

(Wi,t+1 −Wi,t + ∥gi,t∥ ∥yt+1 − yt∥)

=Wi,T −Wi,1 +

T−1∑
t=1

∥gi,t∥ ∥yt+1 − yt∥

(Wi,1 ≥ 0 by Lemma 3) ≤Wi,T +

T−1∑
t=1

∥gi,t∥ ∥yt+1 − yt∥

(A6)

Multiplying both sides of (A6) by µi ≥ 0 and summing over i yields:

m∑
i=1

µi

T−1∑
t=1

hi(yt) ≤µ⊤WT +

m∑
i=1

µi

T−1∑
t=1

∥gi,t∥ ∥yt+1 − yt∥

=µ⊤WT +

T−1∑
t=1

(
m∑
i=1

µi ∥gi,t∥

)
∥yt+1 − yt∥

(by Cauchy-Schwarz) ≤µ⊤WT +

T−1∑
t=1

∥µ∥2
√√√√ m∑

i=1

∥gi,t∥2
 ∥yt+1 − yt∥

(by Assumption 3.iii) ≤µ⊤WT + ∥µ∥2G
T−1∑
t=1

∥yt+1 − yt∥
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Replacing this inequality in (A4) results in:

T∑
t=1

E {⟨st , x∗ − yt⟩} ≤E
{
µ⊤h(yT ) + µ⊤WT

}
+G∥µ∥2

T−1∑
t=1

E {∥yt+1 − yt∥}+ T ⟨λ , E {x̄− ȳ}⟩

(A7)

Substituting equations (A2), (A3), and (A7) into (22) and rearranging the terms,
we obtain:

η

2
E
{
∥QT ∥2

}
− T ⟨λ , E {x̄− ȳ}⟩

+
G2β

2

T−1∑
t=1

E
{
∥yt+1 − yt∥2

}
−G∥µ∥2

T−1∑
t=1

E {∥yt+1 − yt∥}

+
β

2
E
{
∥WT ∥22 − ∥ [−h(yT )]+ ∥

2
2

}
− E

{
µ⊤h(yT ) + µ⊤WT

}
≤

T∑
t=1

E
{
∥st∥2

}
2α

−G2βE
{
∥x∗ − yT ∥2

}
+

α+ 2G2β

2
D2 + Tη

D2 + 2δ

2

(A8)

Consider the two terms in the above equation: β
2E
{
−∥ [−h(yT )]+ ∥22

}
from the

left-hand-side and −G2βE
{
∥x∗ − yT ∥2

}
from the right-hand-side. To simplify both

of these terms, we use the Lipschitz continuity of h (see Lemma 1):

∥h(yT )− h(x∗)∥2 ≤ G ∥x∗ − yT ∥

By using reverse triangle inequality we get

∥h(yT )∥2 ≤ ∥h(x
∗)∥2 +G ∥x∗ − yT ∥

Using the simple fact that (a+ b)2 ≤ 2a2 + 2b2 we get:

∥h(yT )∥22 ≤ 2 ∥h(x∗)∥22 + 2G2 ∥x∗ − yT ∥2

To connect this result to ∥ [−h(yT )]+ ∥2, note that for any arbitrary vector v ∈ Rm,
the inequality ∥v∥22 = ∥ [−v]+ ∥22 + ∥ [v]+ ∥22 holds. Therefore, for h(yT ) ∈ Rm, we can
write:

∥ [−h(yT )]+ ∥
2
2 ≤ 2∥h(x∗)∥2 + 2G2∥x∗ − yT ∥2 − ∥ [h(yT )]+ ∥

2
2 (A9)
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Utilizing equation (A9) within (A8) and further simplifying by applying QT =
T (ȳ − x̄), and the inequality E{∥st∥2} ≤ L2, we obtain:

(LHSa :=)
T 2η

2
E
{
∥ȳ − x̄∥2

}
− T ⟨λ , E {x̄− ȳ}⟩

(LHSb :=) +
G2β

2

T−1∑
t=1

E
{
∥yt+1 − yt∥2

}
−G∥µ∥2

T−1∑
t=1

E {∥yt+1 − yt∥}

(LHSc :=) +
β

2
E
{
∥WT ∥22 + ∥ [h(yT )]+ ∥

2
2

}
− E

{
µ⊤h(yT ) + µ⊤WT

}
≤β∥h(x∗)∥22 +

TL2

2α
+

α+ 2G2β

2
D2 + Tη

D2 + 2δ

2
(A10)

Here, the left-hand-side is divided into three terms, each of which is simplified as
follows:

LHSa =
T 2η

2
E
{
∥ȳ − x̄∥2

}
− T ⟨λ , E {x̄− ȳ}⟩

(a)

≥ T 2η

2
(E {∥ȳ − x̄∥})2 − T∥λ∥E {∥ȳ − x̄∥}

(b)
=

1

2

(
T
√
ηE {∥ȳ − x̄∥} − 1

√
η
∥λ∥
)2

− ∥λ∥
2

2η

where (a) follows from the Cauchy–Schwarz and Jensen’s inequalities, and (b) is
obtained by completing the square.

LHSb =
G2β

2

T−1∑
t=1

E
{
∥yt+1 − yt∥2

}
−G∥µ∥2

T−1∑
t=1

E {∥yt+1 − yt∥}

(a)

≥ G2β

2
(T − 1)

(
1

T − 1

T−1∑
t=1

E {∥yt+1 − yt∥}

)2

−G∥µ∥2
T−1∑
t=1

E {∥yt+1 − yt∥}

(b)
=

1

2

(√
G2β

T − 1

T−1∑
t=1

E {∥yt+1 − yt∥} −

√
T − 1

β
∥µ∥2

)2

− T − 1

2β
∥µ∥22

here, (a) is justified by Jensen’s inequality, and (b) is obtained by completing the
square.

LHSc =
β

2
E
{
∥WT ∥22 + ∥ [h(yT )]+ ∥

2
2

}
− E

{
µ⊤h(yT ) + µ⊤WT

}
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(a)

≥ β

4

(
E
{
∥WT ∥2 + ∥ [h(yT )]+ ∥2

})2 − E
{
µ⊤h(yT ) + µ⊤WT

}
(b)

≥ β

4

(
E
{
∥WT ∥2 + ∥ [h(yT )]+ ∥2

})2 − ∥µ∥2E{∥ [h(yT )]+ ∥2 + ∥WT ∥2
}

(c)
=

(√
β

2
E
{
∥WT ∥2 + ∥ [h(yT )]+ ∥2

}
− ∥µ∥2√

β

)2

− ∥µ∥
2
2

β

where (a) holds by Jensen’s inequality; (b) holds because of the the Cauchy–Schwarz
inequality and the fact that µ⊤h(yT ) ≤ µ⊤[h(yT )]+; and (c) is by completing the
square.

By employing these three inequalities, the equation (A10) can be rendered in a
simplified form as follows:

1

2

(
T
√
ηE {∥ȳ − x̄∥} − 1

√
η
∥λ∥
)2

1

2

(√
G2β

T − 1

T−1∑
t=1

E {∥yt+1 − yt∥} −

√
T − 1

β
∥µ∥2

)2

+

(√
β

2
E
{
∥WT ∥2 + ∥ [h(yT )]+ ∥2

}
− ∥µ∥2√

β

)2

≤β∥h(x∗)∥22 +G2D2β +
T + 1

2β
∥µ∥22 +

TL2

2α
+

αD2

2
+ Tη

D2 + 2δ

2
+
∥λ∥2

2η︸ ︷︷ ︸
Γ

(A11)

The equation above can be employed to individually bound each of the three
left-hand-side terms with respect to the newly defined parameter Γ. This implies:

1

2

(
T
√
ηE {∥ȳ − x̄∥} − 1

√
η
∥λ∥
)2

≤Γ

1

2

(√
G2β

T − 1

T−1∑
t=1

E {∥yt+1 − yt∥} −

√
T − 1

β
∥µ∥2

)2

≤Γ

(√
β

2
E
{
∥WT ∥2 + ∥ [h(yT )]+ ∥2

}
− ∥µ∥2√

β

)2

≤Γ

30



Which become

E {∥ȳ − x̄∥} ≤
√

2

T 2η
Γ +
∥λ∥
Tη

T−1∑
t=1

E {∥yt+1 − yt∥} ≤

√
2T

G2β
Γ +

T∥µ∥2
Gβ

E
{
∥WT ∥2 + ∥ [h(yT )]+ ∥2

}
≤
√

4

β
Γ +

2∥µ∥2
β

(A12)

Substituting (A12) in Lemma 6 yields:

E
{
∥ [h(x̄)]+ ∥2

}
≤G

T

(√
2T

G2β
Γ +

T∥µ∥2
Gβ

)

+
1

T

(√
4

β
Γ +

2∥µ∥2
β

)
+G

(√
2

T 2η
Γ +
∥λ∥
Tη

)
=

√
Γ

T

(√
2

β
+

√
4

Tβ
+

√
2G2

Tη

)

+
∥µ∥2
β

+
2∥µ∥2
Tβ

+
G∥λ∥
Tη

,

(A13)

Parameter Selection 1 (ParSel.1): By substituting η = ϵ, α = β = 1/ϵ, and
T ≥ 1/ϵ2 into (A13) and utilizing the Γ defined in (A11), we obtain:

Γ

T
≤ O (ϵ) ,

and thus
E
{
∥ [h(x̄)]+ ∥2

}
≤ O (ϵ) .
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Parameter Selection 2 (ParSel.2): To proceed, we must first simplify (A13)
further.

E
{
∥ [h(x̄)]+ ∥2

} (a)

≤
√

Γ

T

((
1 +
√
2
)√ 2

β
+

√
2G2

Tη

)
+

3∥µ∥2
β

+
G∥λ∥
Tη

=

√
Γ

T

(
1 +
√
2
)2 2

β
+

√
Γ

T

2G2

Tη
+

√
9∥µ∥22
β2

+

√
G2∥λ∥2
T 2η2

(b)

≤

√
Γ

T

(
47

β
+

8G2

Tη

)
+

36∥µ∥22
β2

+
4G2∥λ∥2
T 2η2

(c)

≤

√
Γ

T

(
47

β
+

8G2

Tη

)
+

36∥µ∥22
β2

+
4G2 (L+ ∥µ∥2 G)

2

T 2η2

(A14)

here, for (a), we exploit the fact that T ≥ 1; for (b), we apply Jensen’s inequality to
the concave square root function; and finally, (c) follows from (5).

Simplifying the term
√

Γ
T using the definition from (A11) results in:

Γ

T
=
β∥h(x∗)∥22

T
+

G2D2β

T
+

T + 1

2βT
∥µ∥22 +

L2

2α
+

αD2

2T
+ η

D2 + 2δ

2
+
∥λ∥2

2Tη
(a)

≤ β∥h(x∗)∥22
T

+
G2D2β

T
+
∥µ∥22
β

+
L2

2α
+

αD2

2T
+ η

D2 + 2δ

2
+
∥λ∥2

2Tη

(b)

≤ β∥h(x∗)∥22
T

+
G2D2β

T
+
∥µ∥22
β

+
L2

2α
+

αD2

2T
+ η

D2 + 2δ

2
+

(L+ ∥µ∥2 G)
2

2Tη
(A15)

where (a) uses the fact that T ≥ 1, and (b) is satisfied based on the inequality (5).

Replacing α = L
√
T

D , η = L√
T (D2+2δ)

, and β =
√
T

GD in (A15) and (A14) we get:

Γ

T
≤ 1√

T

(
LD + L

√
D2 + 2δ +GD +

∥h(x∗)∥22
GD

+ ∥µ∥2 G
√

D2 + 2δ + ∥µ∥22

(
GD +

G2

2L

√
D2 + 2δ

))
.

and thus

E
{
∥ [h(x̄)]+ ∥2

}
≤ 1√

T

√
A0 +A1 ∥µ∥2 +A2∥µ∥22

where A0, A1 and A2 are defined as follows:

A0 := 47GLD2 + 47GLD
√

D2 + 2δ + 47G2D2 + 12G2(D2 + 2δ)

+ 8G2D
√

D2 + 2δ + 8
G3

L
D
√

D2 + 2δ + ∥h(x∗)∥22

(
47 + 8

G

L

√
D2 + 2δ

D

)
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A1 := 16
G3

L
(D2 + 2δ) + 47G2D

√
D2 + 2δ

A2 := 55
G3

L
D
√

D2 + 2δ + 83G2D2 + 8
G4

L2
(D2 + 2δ)

Remark 2. If the functional constraints satisfy the assumption that for all i ∈
{1, . . . ,m} there exists a point zi ∈ X such that hi(zi) ≥ 0 (meaning that none of the
functional inequalities are satisfied everywhere on the set X ), then we can write:

∥h(x∗)∥2 ≤ GD.

Proof. Using Lemma 1 we have:

hi(z)− hi(x
∗) ≤ Gi∥zi − x∗∥.

Assumption 1 implies ∥zi − x∗∥ ≤ D, thus

hi(z)− hi(x
∗) ≤ GiD.

Using the fact that hi(x
∗) ≤ 0 and hi(zi) ≥ 0, we get

(h(x∗))2 ≤ G2
iD

2.

Finally, summing over i = {1, . . . ,m} gives

∥h(x∗)∥2 ≤
m∑
i=1

G2
iD

2 ≤ G2D2

where we used Assumption 3.iii in the last step.
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Société Mathématique de France 93, 273–299 (1965) https://doi.org/10.24033/
bsmf.1625

[33] Nesterov, Y.: Smooth minimization of non-smooth functions. Mathematical Pro-
gramming 103(1), 127–152 (2005) https://doi.org/10.1007/s10107-004-0552-5

[34] Parikh, N., Boyd, S.: Proximal algorithms. Foundations and Trends® in Opti-
mization 1(3), 127–239 (2014) https://doi.org/10.1561/2400000003

[35] Yurtsever, A., Tran Dinh, Q., Cevher, V.: A universal primal-dual convex opti-
mization framework. Advances in Neural Information Processing Systems 28
(2015)

[36] Duchi, J.C., Bartlett, P.L., Wainwright, M.J.: Randomized smoothing for stochas-
tic optimization. SIAM Journal on Optimization 22(2), 674–701 (2012) https:
//doi.org/10.1137/110831659

[37] Hazan, E., Kale, S.: Projection-free online learning. In: Proceedings of the
29th International Coference on International Conference on Machine Learning.
ICML’12, pp. 1843–1850. Omnipress, Madison, WI, USA (2012)

[38] Thekumparampil, K.K., Jain, P., Netrapalli, P., Oh, S.: Projection efficient sub-
gradient method and optimal nonsmooth frank-wolfe method. Advances in Neural
Information Processing Systems 33, 12211–12224 (2020)

[39] Polyak, V., Tret’yakov, N.: The method of penalty estimates for conditional
extremum problems. USSR Computational Mathematics and Mathematical
Physics 13(1), 42–58 (1973)
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